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AN INSIGHT INTO WIRE ROPE GEOMETRYt

W. K. LEE
Structural Test and Analysis Division. The National Engineering Laboratory.

East Kilbride. Glasgow G75 OQU. UK.

:\bstract-Cartesian cOllnlinatc equatitlns. which describe the helix geometry of wires within a rope.
are presenll'd. Thrtlugh the application of ditferential geometry and the use of the engineering
drawing development approach. problems associated with the three-dimensional helix geometry of
win: rllpe can be solved••11Iowing analysis of the geometrical properties. The ~eometrical analysis
pn:sented in this p<lr't'r applies III any rope with a,xisymmetrlc strands,
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helical wire radius in millimetres
binormal vector
unit vector assOCIated with glolxtl Cartesian coordinates
curv,lture of the centroidal axis of the wire per unit length
posi tion v<:ctor of space curve
helical radius of wire in millimetre,
helical radius 1'1' strand in millimetres
dl'lllll radius in millil1ldn:s
ring radius in millimetres
length or n'pe in millimetres
palh length "I' strand in millimetre,
path length of wire in millimetres
IInit tangent vector (If space Cllrve
glohal (that is, ('artesi'lIl) eoordinatcs ufspaee curve
local coordinal<:s systcm of space c'IIrVC

derivatives of C'rtesian coordinates with respect IlIlIw

ddined param.:lcr
helix angle ufwire in a strand in degrees
helix angl.: of strand in a rope inllegrees
hdi,x ang!.: of rope wound around a drum in d.:grees
,I<'lIhl.: helix angle in degn:es
.tng!.: of rotation in degrees
Jilli:rellliaJ angle of rotatiun in degrees
wire rotational cuordinate in degrees
str,lIId rntatiunal coordinate in degrees
drum rotational cotJrdin,lle in degrees
torsion of helical wire per unit length
radius lIf curvature or the eeutroidal axis of the win:
radius of torsion of the centroidal ,,,is or the wire

JlIuhl.: helix
drum single helil
ring singl.: helix
drulI1 dlluble hdix
ring Jouhle hdil
helie'll wire
hdi<:al strand
rope
drum
ring

hinormal Jirection
Jireetion of wire wt<ttional coordinate in a Lang's lay rope
transp,'sc or a matrix,

tCrown copyright I" 1991.

471



W. K. LEE

I. (;\iTRODL'CTIO:"l

A wire rope is a complex geometrical structure made up of many individual wires. The
construction of wire rope gives it flexibility and as such it is an ideal structure for the
transfer of tensile load. Under normal operating conditions wires within a rope are subject
to varying degrees of mechanical damage. This damage is closely associated with the
geometrical properties of the individual wires with which a rope is constructed. The degree
of damage depends upon the geometrical and spatial configuration of the wires as well as
their positions within the rope. A thorough understanding of the geometrical properties is
required in order to model the deformation and strain components along individual wires
within a rope under operating conditions.

1.1. Geometrical construction ofa stranded Irire rope
The construction of two types of stranded wire rope, namely six-strand and multi

strand. is described in this section to acquaint the reader with wire rope and construction
terminology. The geometrical analysis presented in this paper, however. is not restricted to

these types but applies to any rope with axisymmetric strands,
1.1.1. Six-strand rope. Wires which arc wound around a central straight "king" wire

produce a straight strand [Fig. I(a)(i)]. The outer wires in this strand arc all singk helices.
If now, for example. six of these strands arc then wound around a central straight strand
these outer strands will also have a single helical form. Similarly. the central core wire in
each of these strands has a single helical form; however. the remaining wires in these outer
strands each take on the form of a douhk helix, Such a structure is termed a six-strand
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Fig. I. Rope construction. (a) Six-strand rope. (i) Strand. (ii) Si.\-slrand rope with a main core
strand. (iii) Si.\-strand rope with an (WRC. (h) Multi-strand rope.
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(e)

(d)

Ont' Rop~ Lay

Fig. 2. Type. directIOn amI lenglh or lay. (;II Right-hand Ilrdinary. (hI Lefl-hand ordinary.
Ie) Right-hand Lang·s. (d) Lcfl-h'lI1d Lang"s.

rope (with a main core strand) [Fig. I(a)(ii)]. This six-strand rope is termcd an independent
wire rope core (IWRC) if further strands arc wound around it as shown in Fig. I (a)(iii).

1.1.2. A!lIlr;-,I'l/'{lIIti rill'\'. If a straight strand has several layers of strands wound around
it, a multi-strand rope is pwduccd [Fig. l(h)l. Whilst the central core strand is straight
containing one straight "king" wire and (in this case) six single helical wires, the outer
strands are in single helical form each one containing one single helic.d core wire and six
double helical wires.

1.1.3. 7)'1'(',1' lIntll('ngl" or lay. Where there are several layers of wire in a strand. the
wires of one layer can eross over those of an underlying layer a number of times in each
metre length of rope. This eonliguration helps to bind the rope together. However, it also
causes internal wear in the form of discrete eontact points because the wires of dilferent
layers cwss over one another with certain contact angles. Strands laid in this way are
referred to as being in cross lay. This internal wear can be reduced by adopting equal lay
where the adjacent layers are elli:ctively parallel to one another. If rope strands travel
around in a clockwise direction (that is, in the direction of tightening a right-hand thread
screw) the rope is in right-hand lay and if they run in the opposite direction the rope is in
left-hand lay. When wires lie in the same din:ction as the strands lie in a rope the rope is in
Lang's lay and when they lie in the opposite direction to that of the strands the rope is in
ordinary lay. Stranded rope can therefore be produced as various combinations of Lang's
(left hand or right hand) or ordinary (left hand or right hand). The distance over which a
strand makes one complete rotation is known as a lay length (Fig. 2).

2. PREVIOUS WORK

Until recently mathematical models used to study wire ropes have been relatively
simple and almost entirely restricted to strands made up ofsingle helical wires (for example.
the recent work by Phillips and Costello, 1973, 1985: Raoof. 1983: Utting and Jones,
191'7). Furthermore. although the geometry of wire cross-sections governs the spatial
configuration of the wires and strands in a rope. this has not been adequately considered
in previous work. However. work has been carried out on wire rope with complex cross
sections by Velinsky ('l al. (1984). and on strand cross-sections in stranded ropes by Phillips
and Costello (191'5).
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A relatively small amount of work has been puhlished on the geometry of single and
double helices in ordinary lay rope. In many practical applications, ropes are passed around
sheaves or wound around drums and wires which are double hdiL'es in a straight rope then
become triple helices. Despite this. triple hdix geometry has nl1t previously been considered
in mathematical models.

Starkey and Cress (IIJ59) considered the contact stresses of wires in a simple six-strand
rope. Both "parallel"' and "cross cutting" of straight cylinders were used to modd the
combination of contact situations. However. they assumed that the curved wires could be
approximated by straight cylinders at the contact point. Stein and Bert (I (2) renll-ned this
restriction in their analysis of the problem. They then presented the coordinate eljuations
for the ordinary lay doubk helix and the eljuation for the curvature of this helix. The paper
by Stein and Bert was very brief: a d.:tailed derivation of the eljuations was not given.

I'aramchetty (1978) attempted a study of the geometry of double helical wir.:s.
Howen:r. his equations do not agree either with those of Stein and Bert or thos.: presented
in this paper. For example. it should be r~)ssible to obtain the equations for Lang's lay
from the equations of ordinary lay simply by reversing the direction of the wire rotational
coordinate. This is not so for the equations presented by Karamchelty. Indeed. Karam
chetty's equations do not distinguish between Lang's lay and ordinary lay at all.

The papers by Wick (\986) and Knapp (1988) dealt mainly with the calculation of the
radius of curvature ~lfa single helical wire bent over a shea\(. Their work on doubk helical
wires is restricted to the degenerate limiting case of a strand bent into a circular '11\:.

Lee 1'1 a/. (1987) L'a rried out a more comprehensi ve st ud y in to rope geomet ry. They
considered. for exampk. radii of curvature and torsion for the cllnstituent wircs when
strand or rope is nen! anllind a sheave or wllund arllund a drum.

J. ASst i:\II'TJONS

In order to ontain the results given in this paper. the 1"nIiowing assumptions were
made:

(a) Any section normal to the centroidal axis of a wirc (that is. any transverse section) is
circular noth nefore and ancr neing hentowr a sheave or wound around a drum.

(b) The shape of tlH': centroid'll axis is regarded as the most important geollletrical charac
teristic of a wire.

(c) Th.: shap.: of th.: c.:ntrllidal axis of a curv.:d wire within a rop.: is a hdix; it may be
cither in the form of a singk helix. doubk helix. (lr tripk helix .

.t. (HTINITIONS or (jEO:\IETRIC:\L I'AR:\:\IETERS

The geometrical nomenclature of wir.: rop.: used in this paper is provid.:d in Fig. 3 to
which n:ference should be made when reading the ddinitions (a) (d) and (g).

(a) Wirl' !JI'/i("(// rae/illS (Ie)

The helical radius of wire wound around any cylindrical strand is defined as the
perpendicular distance from the centroidal axis of the win: to the centroidal axis of the
parent strand.

(b) SIn/lit! !J1'!inl! /'ell/illS (I()
For a strand wound around any type of cylindrical core. the strand hdical radius. Us.

is defined as the perpendicular distance from the centroidal a'{is of the straight king wire
to the centroidal axis of the core wire of a helical strand.

(c) Wire rorariol/al c(lore/il/are (Ow)

For two nearby points on thl: centroidal axis of a wire the dilTcrl:ntial d(}~ of the
rotational I:Llordinatl: (/~ IS given by the angle hetwel:n the osculating planes at the two
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Fig..1. (ieOIll.:lrical fWlIlenclatlire of wire rope. Key: A A transverse section ofrore.1I IItransverse
section of straliJ. (I helix ang.le of strand. 1<, and I<w helical radius. /I. and /I. rotational coordinate.
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points. The oseulating plane at a point is defineu as the plane formed by the tangential and
normal vectors at that point.

(d) Sfralld rofafiollal coordillafe (OJ

For two nearby points on the centroidal .txis of a strand wound around a core strand.
<In IWRC. or <I multi-stmnd rope, the dillcrential dO, of the rotation<ll coordinate 0, is
dcfineu as the <Ingle between the osculating planes at the two points.

(e) Rill.'l/drulll radills (R, alit! Ra)

If a strand or rope is passed over a sheave then the ring radius, R" is defined as the
perpendicular distance from the centre line of the sheave to the centroidal axis of the strand
or rope. Similarly, the drum radius. R.I' is defined <IS the perpendicular distance from the
centre line of a drum to the centroidal axis of the strand or rope wound around the drum
(Fig. 7).

(n Rill.'l/t!rulll rafolioll (0, alit! OJ)
For two nearby points on the centroidal axis of a strand or rope passed over a sheave

the dilTerential dO,. of the ring rotation coordinate 0,. is defined as the angle between the
osculating planes at the two points. The drum rotation coordinate. Oll' for a strand or rope
wound around a drum can similarly be defined (Fig. 7).
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(g) Hdix 1I11.qlt' (X. {J. ~. alld~'*)

The hdix angh: at any point along the centroidal axis of a wire in a rope is defined as
the angle between the tangent vector to the axis and the plane normal to the axis. The helix
angie for points along the axis of a strand or a rope is defined similarly.

For a strand in a straight rope the helix angle is a constant. The strand helix angIe: of
a straight strand is 90 . It will be shown in this paper that for a wire with the order of its
helical axis greater than one (that is. II > I) the helix angle is a periodic function of position.

De!illirillf/ or Helit'/.'s
(i) Sill(lle helix (Borowski and Borwein. 1989). A curve with parametric equations

x =acosO r = hsin 0 ::: = cO ( la)

b a singh: helix whose axis is the Z-axis. For a circular helix the constants (/ and h are equal.
The constant c determines the pitch (that is. lay length) of the helix.

(ii) DO/lhte helix. A double helix is a helical curve whose axis is a single helix. For
example. wires wound around a singh: helical strand or a single helical strand wound around
a drum. The parametric equations for a doubh: helix are given in eqns (II) and (15).

(iii) Triple helix. A triple helix is a helical curve whose axis is a double helix. For
exam ph:. a wire wound around a helical strand which is itself wound around a drum. The
parametric equations for a triph: helix are given later in this paper [eqns (17) and in the
Appendixl·

l<Clllark. i\ hdix can be a single helix. douhle helix. triple helix or even higher order.
An 11th order heli.'\ has a helical a.xis of (11-1 )Ih order. i\ circle 1)1' a straight line can he
considered as a degenerate limiting case or a single helix as the helix angle approadles 0 or
90 respectively. For a singh: hdix. II is I.

5. (iFOMFTRICAL MOIH].L1~(ior \VIRF I{OPE

5.1. Apl,limtioll o(dal"erelltial gcollletry
The eentroidal axis orany wire in a rope is a three-dimensional space curve. It is

convenient to usc a local coordinate system at eal:h point on the centroidal axis defined by
the tangential. principal normal. and binormal vectors at that point. This is referred to as
the Frenet frame at that point (Fig. 4). The position vel:tor of a point on the l:cntroidal
a.'\is is given in global Cartesi;lll coordinates by

,.------ Normal ·n·

x

W,t. Modet -----..

z Plane

Normal Plan"

y

Fig:. 4. Coordinate system of wire rope geoTnetri\:al model. Key: r flosition vector . .r Y···Z g:lohal
Cartesian coordinate. c-n-h Frencl frame.
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r = Xi+ rj+Zk,

The derivative of this. with respect to the variable parameterizing the curve. is

i' = .\"i+ l"j+Zk.

(I)

(2)

If the curve is parameterized by the angle of rotation Ow. the distance dS between two
nearby points on the curve is given by

dS = Ii'I dVw.

that is.

The arc length between two points. Ow = a and Ow = b. is given by

S = I" Ii'I dOw,1

(3)

(4)

(5)

Several expressions which arc useful in calculating the geometrical properties of space
curves are given below (see. as general references. Angus. 1975: Francis. 197R: Spiegel.
19X I):

Curvature of a space curve

, :0:'2- }'1.'):+(Z.\,-Z.\'):+(.O'-X}')::1 Z

1\= (,\'1+}'Z+zz)'z

Torsion of a space curve

,r Y 1.'
,r f z
1 "f' 2:

r = (}'Z-i'Z)1 + (1.',\' -2,\')1 + (.\;f - ,h'):' (7)

Lee (19X9) has presented the following expression for the helix angle [see Fig. 5(a)
and (c) I :

(aJ

(bl

C~ntroidal

A.is of Strand

C~ntroldal

A.is of Wlr~

I / (Double Het ..)

/A. ~ rang~nt '!'

Singl~ H~l ieal
Path

Path of K,ng

Wjrt- X

(e I

y

Fig. 5. Geometrical feature of d,'ullic heli~. (a) Rope model. (Il) Devel,'prnent of doullic helical
palh. (c) Heli~ angle. Key: T tangent vector. ;.• double heli~ anglc.
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(8)

5.:!. DLTe!opment approach to geometrical analysis
Th~ ~ngin~~ring drawing d~velopment approach applied to rope helical g~om~try is

based on the id~a of projecting the centroidal axes onto a plane. without stretching or
shrinking. It uses the fact that a cylind~r is a developable surface (Mott. 1976; Abbot.
1987). The approach provides:

(a) a method for evaluating the path length of the centroidal axis of a strand or of a helical
wire in a strand. and

(0) rc1ationships odween the wire. strand and rope rotational coordinates.

The devc10ped path of a double helical wire in an undeformed rope is shown in Fig.
5(0). The expression for the path length can be obtained from Fig.5(b) by using simple
trigonometry. Relationships for strands and ropes bent over sheaves or wound around
drums can he obtained similarly. and are summerized in Table I.

Another application of the dcvelopment approach is to relate the ditferent rotational
coordinates in a rope (for example. 0... and 0, in a straight ropc. Fig. 3). The rotational
coordinates of helical wires and strands for a rope wound around a drum or hent over a
sheave can hc ohtaincd in terms of the rotational coordinate of the drum or the sheave.
Equations for douhle and triple helices can then be written in terms of anyone of the
rotational coordinates.

The relationship between the wire rotational coordinate. 0•. and the strand rotational
coordinate. 0,. in an undcforrned rope is

R...o = t'ln xcos/ill• R,' ..... (9)

The rdationship hclween tJ, and 0... for a strand wound ~lroU!H,1 a drum is essentially the
same. with i'. OJ and Uti replacing 11.0, and U, respectively.

Tahle I, Equalions represenling Ihe palh length of the ccntre·line of
constituent wires. s!r:tnd or rope using Ihe devel0plllent method

Palh length (eenlre-line)

Straight single helical wire

Str'light double helical wire

(Alternatively)

Ring single helical wire

Strand afl~ulltl a sheave

Ring <founlc helical wire

Rope around a sheave

Drum single helical wire

Strand around a drum

Drum dounle helical wire

Rope around a drum

Expression

'} .. .... II. _ . / _ R (I
.• - sin lcos/I' I. - ••

{[
R (I J: }' :S. = .~' + R;,O;,

cos II
S. = (R:'II;'+R~(I~)':

S. '" RKIIK

S_ = (R;,O;, + RJI/~ + R;,II;,J' :
SK '" R.OK

[
R'O'J':

S· = O:R: IJ IJ
.. ... w + ..

C[}S~ ~.

Rullo
S, = c;;s;~
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[f the centroidal axis of a wire in an undeforrned rope is a double helix then. when the
rope is wound around a drum. the axis will become a triple helix. The relationship between
0.... and II, is then

Ou =~: tan :x sin pcos yOw. ( 10)

5.3. Deriration ofcoordinate eql/ations
The shape of rope helices can vary considerably. depending on the location of the

wires. the combination of helix angle and the lay directions of wires and strands within a
rope. Also. the shape will depend on how the rope or strand is wound around a drum or
bent over a sheave. The coordinate equations for a single helix are given in Angus (1975).
Francis (1978) <md Spiegel (1981); the coordinate equations for double and triple helices.
together with some applications. are presented in this paper.

(a) DOl/ble helix. The geometrical properties of double helical wires in a rope depend
on the helix angles and lay directions of the wires and strands in the rope. Double helical
wires are found in the helical strands of a straight rope. in a strand bent over a sheave and
in a helical strand wound around a drum.

In a double helix. the geometrical properties such as the helix angle. curvature and
torsion vary cyclically. A rope is referred to as ordinary (or regular) lay if the orientation
of the wire helix is opposite to the orientation of the strand helilt; otherwise. it is referred
Was Lang's lay. Equation (11) is derived by resolving the position vectors of points on a
transverse strand section (section R R in f-ig. 6) onto the transverse rope section (section
A A in Fig.. 6). The Cartesian coordinate equations. in matrix form. of the ordinary lay
douhk helix can he written ;IS:

Ix} {O}{R} ( II )

;lnd

z

{X }I' = {X. y. Z} ( /1)

( 13)

Rop~ Mod~1

5t ,and Mod~1

~---II--w;,~ Mad~l

Fig. 6. Coordinate system of double helix (ordinary lay rope).
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{

cosO,

:0: = sinO,
tan p0,

(cos O",cosO, +sin II sin 0, sin P) O}
(cosO.... sinO,-sinll cosO.sinp) 00.

sin O",cosp

( 1'+)

The coordinate equations of the Lang's lay double helix can be obtained simply by
reversing the direction of 0.... in eqn ( 14) (that is, replacing /}'" by - 0.... ) to give:

( 15)

where

(cos OwcosO,-sin 0.... sin O,sin /1) O}
(cos O",sin (},+sin Ow cos (},sin tn 00'

- sin Ow cos fl

( 16)

(h) Triple helix. For a rope wound around a drum or bent over a sheave, the centroidal
axis orthe king wire forms a single hdix, the centroidal axes of any single helical wires form
double helices (refer to Fig. 7) and the centroidal axes of all of the double helical wires
form triple hdices. The geometrical properties of triple hdical wires in a rope depend on
the helix angles and lay directions of the wires, strands and rope.

The Cartesian cOOl'llinte equations for a triple hdical wire. in a rope wound around a
drum. are derived by cUl1sidering three planes A A, B Band C C. Thesl.: arc. n:spectivcly.
thl.: transVl.:rse pla11l.:S ur intersl.:ction of the drulll, rope and strand. Figurl.: 7 shuws a douhle
hclil'al wirl.: in a right-hand ordinary lay rope, wound around the drullI in thl.: right-hand
directiol1. The coordinate I.:quations arc derived as follows. The position vectors (rdative
to thl.: Frenet fr:ll11e of the strand) of points in the wire section C C arc resolved onto the
plane B B. The positiun vl.:etors of these mapped points, relatiw to the hl.:net frame or the
ropl.:. an: then resolved onto the plane AA. This allows the geometry or the single hdix to
hI.: used to cakulate thl.: triple hdix eoordinatl.: equation (17).

The coordinatl.: equations, in matrix form, for the triple hdix can be written as:

l!'ntroidal

A..s of RoPl!'

(S.ngtl!' Hl!'I ..J

Fig. 7. Coor<linate s\'stem of triple hcli~ (ordinary lay ropel. Key: ;. hcli~ angle of rope. r\ ....\
-tranwerse section ~)f drum. R· R transverse section of rope. (' .C' transverse section of str;lnd.
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(17)

with
( 18)

(19)

(20)

where Xo. Yo and Z[) are the coordinates of the centroidal axis of the rope. The expanded
form of these equations is given in the Appendix to this paper.

5A. ealmlating the gcotl/etricalpwl'l!fties of rope helices
The coordinate equations for double and triple helices are given in terms of three

parameters 0",. (), and OJ, However. (), and OJ can be obtained from 0", by using eqns (9)
and (10). so the coordinate equations depend only on 0",. The curvature and torsion of the
helices can be ohtained from the coordinate equations by dilferentiation.

ft. DISCUSSION OF TilE IMPLICATIONS OF ROPE GEOMETRY

The main results of the geometrical model for single. douhle and triple helices arc now
hrielly presented and discussed. The relationship he tween the geometry of a rope and the
type of damage to its constituent wires under cyclic loading has heen discussed in more
detail hy Casey and Lee (19lN).

The author has written a computer program to evaltlate curvature. torsion. helix angles
and other geometrical properties of rope helices. This program was used in drawing the
graphs presented in this section.

6.1 ..';ill!!le heli.\· (rc/i'rellce shol/Iel he lIIade to Fig. X)

For a single helical wire the radius of curvature, radius of torsion and helix angle arc
constant along the length of the wire [Fig. X(a)\.

The curvature and torsion of a wire are related to the internal forces and moments by
the equations of equilihrium presented by Love (1944). These equations imply that the
internal forces and moments are constant along the length of each wire of a single layer
and equal lay multi-layer straight strand subjected to monotonic tensile loading. Unda
dynamic loading this may not bc the case because of non-linear elli:cts, such as Coulomb
damping (Nayli:h and Mook, I':J79l.

The helix angle of a single helical wire is usually between 60 and 90 ; within this range
the radius of curvature, and to a lesser extent the radius of torsion. of the wire changes
rapidly with helix angle [Fig. ~Hb) and (c)]. Theoretically, the bending and torsional stress
components along a large diameter single helical wire would he very sensitive to small
changes in helix angle. Quantities such as the radial force. contact force and complementary
shear force. which depend upon the hending and torsion. would also he very sensitive to
changes in the helix angle. Bending and torsional stresses can he reduced by the use of
smaller diameter wires. However, very small diameter wires (that is. with diameter less than
2 mm) can be susceptible to corrosion (National Coal Board 19~O). Although bending and
torsional stresses on a single helical wire surface can be reduced by using smaller diameter
wire. the corresponding decrease in helical radius will. to some extent, alrect these stresses
level as the result of the decrease in radius of curvature and torsion [Fig. 8(d)].

6.2. DOl/hie helix (refaellce shol/ld he lIIadc to FZqs 9 alld 10)
Geometrical Properties: for a double helical wire the curvature. torsion and helix

angle can be regarded as functions of 0",. The mathematical model presented in this paper
shows that:
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(a) The curvature. torsion and helix angle are periodic functions of 0... with a period of at
most 360 (Figs 9(a). (b). (c) and 10(a), (bJ. (c)).

(b) For a Lang's lay rope the period of both curvature and torsion is 360 , with the two
functions being 180 out-of-phase [Fig. 9(a) and (b»).

(c) For a strand wound around a drum (in ordinary lay), the torsion has a period of 360
but the period of the curvature may be less than this [Fig. lOla) and (b)).

(d) The curve of the helix angle function will shift upward as the helix angle of the strand
increases. For Lang's lay and ordinary lay ropes. both helix angle functions are 180
out·of-phase [Figs 9(c) and 10(c)].

(e) For a double helkal wire in a Lang's lay rope, the minimum helix angle corresponds
to the location where the maximum curvature and minimum torsion occur. For a
double helical wire in an ordinary lay rope. the maximum helix angle corresponds to
the location where the maximum curvature and minimum torsion occur (Fig. 9).

In order to visualize the geometrical implications of the double helical wires within a
strand. the locations corresponding to different values of Ow on the outermost layer of an
outer strand are listed below:

(i) Points for which 0", is a multiple of 360 arc on the crown of the rope.
(ii) Pl.lints for which «(}w -11'0 ) is a multiple of 360 arc points of contact with thc strand

layer immediately beneath the current strand layers.
(iii) Points for which (II... -1.)0 ) is a multiph: of ISO <Ire points ofcontact with neighbouring

strands in the current strand layer.
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Elastic rod theory shows that:

Bending moment = flexural bending stiffness x change in curvature.
Twisting mOlm:nt = flexural twisting stiffness x change in torsion.

Combining these Cllliations with the rcsults of the geometrical model it can be seen that:

(a) Internal components of fon:es and moments will vary periodically with 0... along a
double helical wire. irrespcctive of the frictional condition imposed on thc wire.

(b) If a ropc is subjccted to tension tension fatigue tests the failure modes and the pattern
of contact patches along a double helical wire will vary periodically with Ow (sec Casey
and Lee. IlJHlJ).

For a rope which is not subjected to bending. the wire helix angle will in practice
always be greater than 60'. Thus curvature will. to a good approximation. be 180' out-of
phase with torsion. This implies that. for a straight rope under tension. points of maximum
bending will also bc points of minimum twisting. and vice versa. Bending and twisting will
be periodic in Ow with a period of 360 .

The period of the curvature of a strand wound ,lround a drum will be reduced if the
drum helical radius is increased or the strand helix angle is reduced. For an ordinary lay
rope the pcriod of thc curvature will also be rcduced because the helix angle. for a strand
wound around a drum. can be very small (less than 10).

If a transverse section is made through the longitudinal axis of a ropc the variation of
the helix angle of a double helical wire is such that:

(a) The wire cross-section is approximately elliptical whcn the wire helix angle is a minimum
and is circular whcn the wire hclix angle is a maximum. The lay configuration of a rope
can thus be identilled from its transverse section.
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Fig. 9. Geometric.1! properties or straight douhle hdical win:. (a) Variation or the curvature or a
douhle hdi~ with wire rolation:tl coordinate. (h) Variation of the torsion of a double hdi~ with
wire rotational coordinate, (c) Variation Ill' douhle hdi~ angle with wire rotation coordinate. Key:

hdi~ angle = so . R. = 2 Inln. R, '" (, l1un .. _.- Lang's lay. -- ordinary lay.

(b) When the wire hdix ~Inglc is a minimum the curvature is a maximum and the torsion
is a minimum. Similarly, when the wirc hdix angle is maximum the curvature is a
minimum and the torsion is a maximum. These characteristics allow high bending and
twisting stresses along a wire to be located.

From (a) and (b). it can be shown that iran ordinary lay rope with a Lang's lay IWRC
is subjected to a tensile load. the maximum curvature and minimum torsion of a wire will
occur in the regions of contact hetween the ouIer strands and the rWRc. The maximum
torsion and minimulll curvature occur at the crown of the outer strands.
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A single helical wire in ;t straight strand will be deformed into a double helical wire
when the strand is wound around a drum. A single helical wire has a constant curvature;
when the wire is deformed into a double hclic;i1 wire the curvature will be a periodic function
of Ow which willlic above the Ow axis. The graph of the ditTerence between the double helix
curvature and the single helix curvature will be the same shape as the graph of the double
helix curvature but shifted downwards towards the Ow axis. Similarly. the graph of the
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Fig. II. Geomclrical properties of drum double helical wire. (il) V"riation tIl' the curvature of a
triple hdi:\: with wire rotatiOJUlI coordinate. (hI Vari:llion of the torsion of a tnplo.: hcli.ll with wire
rot:ltion:11 coordin:lte. (cI Variation of triple helix. anglc with wire rot:llional cOllrdin:lte. Key: heh:\:
angle of wire = KIl , hdi.ll :ll1glc of str:rnd = KO , helix. angle of rope = 10 , hdic:ll r:ldius of wire :::
4 nlll1, hcli..:al radius of str:rnd = K mm. drum r:rdius = SIX) mill, -- Lang's lilY, -- ordin:lry lilY.

dilTerence between the douhle helix torsion ~lnd single helix torsion will be the same shape
as the graph of the double helix torsion, but shifted downward towards the Ow <lxis.

The graphs of the curvature and torsion ditlcrcncc functions imply that:

(a) For a double helical wire in a Lang's lay strand the highest bending stresses will be at
the crown on the top surface of the strand and the crown in contact with the drum.
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wire rotational coordinate. (c) Variation of triple helix angle with wire rotational coordinate. Key:
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(b) For a double helical wire in the outermost layer of an ordinary lay strand. the highest
bending stresses will be at the region of cont'lct with adjacent strands. At the crown.
thc magnitude of the twisting stress will be a maximum. The highest twisting stresses
will be at the region of contact between the crown and the drum,

6.3. Triple hdim/wire (reference should he made to F(qs II and 12)
The variations of curvature. torsion and helix angle for a triple helical wire are more

complicated than for the double helical wire. The mathematical model presented in this
paper shows that:
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(i) The magnitude of the curvature ofa triple hdical wire in an ordinary lay rope is smaller
than for a wire in a Lang's lay rope of the same size [Figs I \(al and 12(a»). In other
words. bending stresses will be smaller in triple helical wires in an ordinary lay rope.

(ii) The variation in the torsion of triple helical wires in a Lang's lay rope is much less
than in an ordinary lay rope [Figs II(b) and 12(b)]: triple helical wires in a Lang's lay
rope are therefore subjected to more twisting.

(iii) The variation of the helix angle for a triple helical wire in a Lang's lay rope is much
greater than in an ordinary lay rope [Figs II (c) and 12(c)).

The geometrical properties of a wire in a rope wound around a drum are determined
by the direction of lay of the rope as it is wound around the drum. as well as the lay of the
strands and wires in the undeformed rope.

For a rope wound around a drum. the mathematical model shows that the bending in
double helical wires within a Lang's lay rope is greater than in double helical wires within
an ordinary lay rope. for all values of Ow' The torsion in a double helical wire in a Lang's
lay rope is greater than in a double helical wire in an ordinary rope for most values of Ow'

7. CONCLlfSION

A mathematical model based on vector dilTcrential geometry and a development
approach was used to investigate the geometrical properties of rope helices. A wmputer
program derived from the mathematical model was used to calculate the geometrical
parameters of double allll triple helical wires in strands and ropes. The prohlems of strands
and ropes bent around a sheave or wound around a drum were considered.

The wire curvature and torsion functions can he related to bending stresses. The
properties of these functions and their implic,ltions for hending and twisting stresses depcnd
on thc lay of the rope: hoth ordinary lay and l.ang·s lay were discussed .

..klwOIdct/'/t'lIIt'1It., . The author ;ll:knowlel!~e,with gratitude the as'ilstam:e provided hy Dr N. Casey. Dr R. llat(
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I'ruf. J. Spence. I>epartlnen! of Mechanical and I'wcess En~ineering. DiVision "I' Mechanics of Materials.
University of Strathdyde. (ilas~"w. This paper is puhlished hy permissi'''1 of the I)ireetor. National En!;in<:ering
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APPE~D1X: EXPA:-':SION OF TRIPLE HELIX COORDI~ATE EQUATIONS IN
MATRIX FORM

I. .\lalrix : i([):

where

:n is a 3 x 3 unit matrix

:Q;r = ;tan;-O".cusO". sin O,,}.

., .\Iatrix ::<"0\1:

where

'I" ..1'1 °1:..,: ..I:, ..1: 1 l..", A,: 0

R"I''' 1\'0/m" arou,," "r11111 i" lit" leli-Ita"" "",'cII""
(a) Thc c1cmcnts "I' matrix: ..j: f"r a right·haml Llltg's lay r"pc

A" sin 0, cos,'

..1'1 cos /I. sin 0, c"s ,'I' sin 0. (cns 0, sin II c"s,' cus II sin ,.)

.., :, Ct" 0" cos II, +- sin 0" sin II, sin i'

A" .' lcos 0. sin II, sin ,'I- sin 0. (cos 0. sin II sin i' +..:os II..:os ,'lI sin II"

.. (..:os 0. cos II, - sin 0. sin 0, sin II) ..:os 0, •

."" = sin II" cus II, ~ cos II" sin II, sin "

..1'1 cc -{..:os II. sin II, sin ,'+sin 0. (cos II, sin II sin ,'+cus II cos ,')1 cos II"

I- (..:ns II. cos II, - sin II. sin 0, sin II) sin II".

(AI)

(A:!)

(A3)

(,\4)

(AS)

(A6)

(h) Thc c1cmcnts of matri.' : .-'} for a right-hand orL!inary lay ..:an hc ohtaincL! by reversing the L!ire":lion of II, in
eqn ("51

... " = - 'Ill 0, cos I

A" = - ..:os 0. sin II, ..:os ,'+ sin II. (cos II, sin II cos ,'- cos II sin i')

••, 11 = ..:os 0" cos II, - sin II" sin II. sin i'

..1 11 = [ - cos II. sin II, sin i' + sin 0. (..:os II, sin II sin ,'+ cos Il..:os ,')] sin 0"

+ (cos II. cos II, + sin II. sin II, sin fI) ":llS II"

..1\1 = sin II" cos II, +cus II" sin II, sin i'

..1\1 = [cos II. sin II, sin ,'- sin II. (":0' II, sin II sin i' +CllS II cus ,')1 CllS II"

+ (cos II. cos II, +sin II. sin II, sin II) sin II". (A7)

R"I'" 1I'1II1IId arou"d dru1II i" II,,· r~I/II/·JItI"d "irecli""
(a) The clements of matrix : ... } for a righl-hanL! Lang's lay can hc ohtaineL! by reversing the dir~-ction of On in

clln (AS)

A" = sin II, CllS "

..1'1 = cos II. sin II, cos,' + sin II. (cos II, sin II cos,' -CllS II sin ,')

A:, = cOS II" cos II, - sin II" sin II, sin "

..1 11 = -{cos fl. sin II, sin ,'+ sin II. (Ct'S II, sin II sin I +CllS II CllS ,')1 sin II"

+ (cos II. cos II, - sin II. sin 0, sin II) cos II"

A" = - sin (I" cos II, -cos 0" sin 0, sin "
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A ': = - [COS II. sin fI, sin ;' ~ sin II. (cos II, sin Ii SIO ": ... cos Ii <':l'S ;')1 i:US 011

- (cos II" cos II, -sin 0" sin II, sin 1/) SIO 1Ir>' (A~)

(h~ The C'k'mC'nts of matri, :.-t: for a right-hand ordinary lay can i'>\: ontaineu liy revl:rsing thC' direction of fin
anJ II, In C'qn (A51

A I I = - sin 0, cos ;'

.-t I: = - cos II" sin /I, CllS ;. + sin 0" (cos /I, sin I! cos ;' - nlS (I sin :')

,I: I = CllS Or> cos /I, + sin Of) SIO II, sin ;.

.-I:: = [cos 0.. sin /I, SIO ;'-sin II" (CllS /I, SIO (i sin ;· ... l.:l1' Ii I.:l" ':)1 '11'10
"

+ (CllS fI" Cl'S 0, + SIO II.. sin ii, SIO tn ,'llS II"

A .' = [nls II" sin II, sin ;' - sin II" kos II, sin (i 510 ;. + Cos {i Clh :'~I cos lir>

- (ClIS 0" ,os II, + sin II.. sin 0, sin tn sin 0", (N))


